logo menu top
IET tv globe Technology - Electronics
Services supporting the growth of knowledge in engineering and technology image

Harvesting Cellulose and Sunlight to Power Butanol Biosynthesis: A Synthetic Biology Approach to Metabolic Engineering

G H McArthur

Presentation from BioSysBio 2008, Imperial College, London, UK

21 April 2008  Electronics channel

>> recommend to a friend

Please login to view Technology channel presentations.

About the presentation
The near-future “killer application” of synthetic biology may be in biofuel production. Therefore, the 2007 Virginia Genetically Engineered Machine (VGEM) Team utilized a modular, synthetic biology approach for the design and attempted construction of a novel metabolic pathway in E. coli for the production of butanol, a promising alternative liquid transportation fuel. This poster presents progress toward the implementation of a synthetic pathway that utilizes light energy in addition to chemical energy stored in cellulose to drive the biosynthesis of a chemical product such as butanol. A butanol biosynthesis system (from Clostridium acetobutylicum), a cellulase system (from Saccharophagus degradans), and the light-activated proton pump, proteorhodopsin (from marine metagenomic analysis), were used to design the synthetic pathway. The VGEM Team was successful in implementing proteorhodopsin in E. coli. Proteorhodopsin-expressing bacteria exhibited a growth advantage only when experiencing respiratory stress (that is, in the absence of oxygen). Therefore, proteorhodopsin may be valuable in increasing the efficiency and yields of bioprocesses that must occur under anaerobic conditions such as the biosynthesis of butanol.
About the speaker
George McArthur is expecting to graduate from the University of Virginia in May 2008 with a BS in Chemical Engineering (concentrating in biotechnology), a BA in Music (concentrating in composition), and a minor in Biology. He plans to enrol in a biological engineering graduate program in the fall and is interested in utilizing synthetic biology for the metabolic engineering of marine microorganisms.
Webcast search